De ziekte van Sjögren is lastig te herkennen in de huisartsenpraktijk, omdat de verschijnselen en symptomen sterk verschillen tussen personen. Dankzij de inzet van machine learning is het mogelijk om potentiële patiënten vroegtijdig te herkennen. Daarbij zetten we algoritmes in die gebruikmaken van data uit elektronische patiëntendossiers.
Dit onderzoek is uitgevoerd door het Nivel en internationale collega’s uit het Europese HarmonicSS project en is onlangs gepubliceerd in het wetenschappelijke tijdschrift BMC Primary Care.
De ziekte van Sjögren is een onder-gediagnosticeerde, langdurige auto-immuunziekte die de vochtproducerende klieren van het lichaam aantast. Vaak duurt het lang voordat deze patiënten worden doorgestuurd naar een specialist en een uiteindelijke diagnose krijgen. Hierdoor kunnen ze niet vroegtijdig behandeld worden, iets dat juist van groot belang is voor deze patiënten is en zorgt voor een betere kwaliteit van leven.
Machine learning, een methode om met behulp van een algoritmes patronen te vinden in grote hoeveelheden data, draagt bij aan een vroegtijdige herkenning van mogelijke patiënten met de ziekte van Sjögren. Dit is een eerste stap richting een beslissingsondersteuningssoftware om huisartsen te ondersteunen bij het herkennen van Sjögren patiënten.
Lees hier het volledige artikel.